Thursday, June 23, 2016

Electrokinetic Remediation and Phytoremediation of Metal Contaminated Soils

Coupled Electro-kinetic Remediation and Phytoremediation of Metal(loid)Contaminated Soils 

Xinyu Mao 1,2,
Fengxiang X. Han 2 *,
Xiaohou Shao 1 and
Yi Su 3
1-College of Water Conservancy and Hydropower Engineering, Hohai University, China
2-Department of Chemistry and Biochemistry, Jackson State University, USA
3-Department of Chemistry and Biochemistry, Texas A&M University-Texarkana, USA

 Coupled Electro-kinetic Remediation and Phytoremediation of Metal(loid) Contaminated Soils. J Bioremed Biodeg 6: e163. doi:10.4172/2155-6199.1000e163 Volume 6 • Issue 2 • 1000e163 J Bioremed Biodeg ISSN: 2155-6199 JBRBD, an open access journal

Soil contamination with heavy metals and metalloids has become a serious environmental problem with rapid industrialization and urbanization [1-3]. Generally, the contamination is resulted from anthropogenic activities such as mining, domestic waste discharge, agricultural production and industrial activities. Heavy metals and metalloids such as Cd, Pb, Cr, Cu, Hg, Cs, Se, Zn and As enter the food chain and have adverse effects on human health [1-3]. As the increasing concern on the environmental risk, numerous remediation technologies have been developed while very few methods had been proved to be efficient for cleaning up of heavy metal(loid)s due to their characteristics of persistence and non-degradation in contaminated sites [1,4-10].

Phytoremediation is a cost-effective and environmental-friendly remediation technology for the remediation of heavy metal(loid)d in soils [4-6]. It promotes water and soil conservation as well as microbial activity improvement. Thus it has proved to be efficient for large area treatment with low pollutant concentration. However, several limitations such as the remediation period, the climatic condition, the root depth, the biomass production and the variety of the contaminants are existed in actual applications [11]. Therefore, selection of plants with high accumulation capacity of contaminants and new technologies for increasing soil heavy metal(loid) bioavailability should be developed.

Electro-kinetic remediation (EKR) which involves a low intensity electric field has been proposed to enhance phytoremediation. It produces conditions to solubilize metal(loid)s in soils based on the combined mechanisms of electro-osmosis, electromigration and electrophoresis [12]. As a consequence of driving force generated by the passage of current, metal(loid) ions and metal complex migrated from anodes to cathodes could be easily absorbed by plants. Since soil pH polarizations caused by electrolytic decomposition at electrodes, control of soil pH and some key electronic parameters are important for the remediation efficiency [13].

This paper reviews the current development on coupled electrokinetic phytoremediation (EK-phytoremediation) technology, including the selection principles of plants for the technology and interactions between heavy metal(loid) input and their bioavailability in soils. Furthermore, assisted amendments and key electronic parameters for the improvement of soil physical-chemical properties and plants remediation effects are also discussed in the paper.

Coupled EK-phytoremediation Technology 

Generally, coupled EK-phytoremediation techniques contain the application of a low intensity electric field adjoined to growing plants in contaminated soil. Significant variables which can affect the technology include the electric field intensity, use of AC or DC current, mode of voltage application, electrodes configurations and facilitating amendments. Lemstrom first applied electric fields on growing plants and found treated plants were greener and experienced an increase in yield [14] The removal of contaminants by plants in coupled EK-phytoremediation technology are enhanced by increasing the bioavailability of the contaminants through the effect of electric field. Increased soluble heavy metals are drive to the plant roots which might bring stress condition for the plants. Therefore, hyperaccumulators are the best choice for the coupled remediation [15]. It has been proposed sequential use of phytoremediation after EKR is beneficial for the cleanup of residue contaminants and recovery of soil properties damage caused by EKR [16]. However, coupled EK-phytoremediation technology has been proved to be more efficient and effective than the sequential use of these technologies.

Plant Selection

Phytostabilization and phytoextraction are often used for the cleaning up of contaminants. Compared to phytoextraction, phytostablization is not a permanent strategy since the contaminants remain in environment. Therefore, phytoextraction becomes the most promising and commercial application for heavy metal(loid) cleaning up in soils. Plants that suitable for phytoextraction possibly should have the features with high growth rate, high resistance to pathogens and pests, highly developed root system, large biomass production of aerial parts, high tolerance to trace metal(loid), great accumulation and translocation ability and good environment adaptability [17].

Metals accumulation and biomass are two critical factors for determination of plant species for phytoextraction purpose. Hyperaccumulators often with comparatively low over-ground biomass, accumulate greater amount of target metals. Other plants such as Indian mustard accumulates less metal but produces more over-ground biomass so that the overall accumulation is comparable to that of hyperaccumulators. Hyperaccumulation and hypertolerance are more important than high biomass in phytoremediation. In addition, compared with nonaccumulators, hyperaccumulators with high accumulation of metals in small volume of biomass are easier and more economic to operate for either metals recovery or safe disposal [18]. Plants with multiple harvests in a single growth period have great potentials for phytoextraction. In addition, due to the high growth rate, great adaptability and high biomass, grasses are more favorable than shrubs and trees in phytoremediation [19].

Bioavailability of Heavy Metals in Soils

Bioavailability of trace metal(loid)s in soil is a determining factor which influencing the efficiency of phytoextraction. Only a part of metal in soil is bioavailable for plants uptake. Processes like precipitation or strong binding to soil particles make a large part of soil metals insoluble and unavailable for plants extraction. Metal(loid)s in soil are divided into three categories according to their bioavailability: readily bioavailable (Cd, Ni, Zn, As, Se, Cu); moderately bioavailable (Co, Mn, Fe) and least bioavailable (Pb, Cr, U) [20] Low bioavailability constrains the phytoextraction effects of heavy metals while the changes of soil physical-chemical properties may enhance the bioavailability and mobility of metals. Secretion of H+ ions by roots will be able to demobilize more metals around rhizosphere. Moreover, activities of rhizospheric microbes significantly increase labile metals in soil. Except enhanced in natural phytoextraction, bioavailability of heavy metals in soil can also be increased by adding chelating agents such as EDTA, ammonium sulfate, critic acid and elemental sulfur et al. in induced phytoextraction [9].

Key Electronic Parameters for EK-phytoremediation Technology 

Significant electronic parameters are electric field intensity, use of AC/DC current, mode of voltage application and electrodes configurations. Electric field intensity has a determining influence on the effectiveness of EK-phytoremediation. Low voltage was beneficial for Indian mustard growth while the biomass production was decreased as the increase of voltage [21]. However, the increasing bioavailability of heavy metals at elevated voltage and the negative effects of the voltage on the plant development were comprised at an intermediate voltage of 2V with the best metal removal and accumulation on plant tissues [21].

Soil pH was reported to decrease from initial pH 6.5 to 3 near the anode and increased to 8 near the cathode with application of DC electric field with potato [22]. Heavy metals had a migration from anode to cathode and an accumulation in the middle of the pot where the pH was 5. On the contrary, no transportation and soil pH change was observed with application of AC electric current. Moreover, potato had 72% increase whereas 27% decline in biomass production under AC and DC electric field, respectively. Overall, test using AC electric field showed higher metals accumulation in both plant roots and shoots than the control test and the DC test [22]. Soil pH changes which resulted from the electrolysis of water were induced by the use of continuous DC electric field. In order to avoid the negative effects, switching the polarity of the DC electric field every 3 h eliminated pH changes and comparable phytoremediation efficiency between the DC and AC tests were achieved [23].

 The effectiveness of coupled EK-phytoremediation was influenced by electrode configurations. An vertical DC electric field or several electrode arrangements were extended with phytoremediation depth, preventing leaching of Pb [24,25]. The configuration with the cathode in the center surrounded with anodes showed greater potential to metals accumulation [25] Recently a 2D electrode configuration with cathode were placed on the surface of the soil and anodes was vertically installed in four corners of a rectangular chamber. The results showed enhancement in both metal accumulation in roots and shoots and metal translocation towards the shoots [26].

Amendments for EK-phytoremediation 

In order to improve metals bioavailability, control soil pH with the favorable range and facilitate plants growth, amendments are added, including chelating or complexing agents, organic amendments and fertilizers etc. Chelants enhance EK-phytoremediation by forming strong water-soluble complex which desorbs metal(loid)s from soil particle surface. EDTA is most frequently used chelant and has been proved to be effective on mobilization of metals like Cr, Fe, Cu, Pb and Zn [9]. The factors included metals species, metal/chelate ratio, presence of competing cations and soil pH et al. In addition, EDTA showed some phytotoxicicty to plants [9]. Complexing agents such as I−, Cl−, NH4 + may form soluble complexes with metal ions. Ammonium thiosulphate could result in the solubilization of Hg enhancing accumulation in plant roots and shoots [27]. Furthermore, acetic acid and lactic acid is used to neutralize the electrolysis product at the cathode and keep the electrolyte pH within a certain range. Ammonium acetate was beneficial for increasing Cu solubility and removal rate [28] Organic amendments such as sewage sludge and green waste composts improve plant growth by enhancing the physicochemical and biological conditions of soils. They also directly or indirectly alter the distribution and availability of soil metals. Several reports revealed that amended compost increased As mobility due to the competing effect of DOC and soluble P component with As for sorption sites. Moreno-Jimenez et al. discovered the mobilization of As, Cu and Se in flooded soils after the application of olive mill waste compost. In contrast, reports also indicated that the bioavailability of Pb was decreased when added compost [27]. Clemente et al. [29] found an increase in mobility of As and Sb after the two years application of compost mulch in soil which enhanced the uptake by lettuce and sunflower [29].

 Conclusion 

The coupled EK-phytoremediation technology is promising for the clean-up of heavy metal(loid)s in contaminated soils. More research is necessary for its practical design and application before applying at field scale. The research directions are suggested in following aspects such as: determine the distribution, translocation and environmental risks of heavy metal(loid)s and their influence on plants metal(loid) s accumulation; test and select the hyper accumulators which possess remarkable metal(loid)s accumulation ability for this coupled technology; test the remediation efficiency of the coupled technology in sites with both organic and inorganic contaminants; try to apply assisted amendments of natural or biodegradable products; elucidate the mechanisms and influence of electronic parameters on metabolism and growth of plant as well as uptake and translocation of metal(loid)s.

Acknowledgement

This research was supported by U.S. Nuclear Regulatory Commission (NRC– HQ-12-G-38-0038), NOAA-ECSC grant (NA11SEC4810001), NIH-RCMI grant (G12MD007581), the Jiangsu Scientific Research Innovation Program of Ordinary Higher Education Graduate (China) (KYZZ0156), the Fundamental Research Funds for the Central Universities (China) (2014B00114).

References 1. Han FX, Arieh Singer (2007) Biogeochemistry of Trace Elements in Arid Environments. Springer.
 2. Han FX, Banin A, Su Y, Monts DL, Plodinec MJ, et al. (2002) Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89: 497-504.
3. Han FX, Su Y, Monts DL, Plodinec MJ, Banin A, et al. (2003) Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften 90: 395-401.
4. Shiyab S, Chen J, Han FX, Monts DL, Matta FB, et al. (2009) Phytotoxicity of mercury in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 72: 619-625.
5. Chen J, Shiyab S, Han FX, Monts DL, Waggoner CA, et al. (2009) Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicol 18 (1): 110-121.
6. Su Y, Han FX, Chen J, Sridhar BBM, Monts DL (2008) Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), Beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Int J Phytorem 10: 547-560.
 7. Su Y, Sridhar BB, Han FX, Diehl SV, Monts DL (2007) Effects of bioaccumulation of Cs and Sr natural isotopes on foliar structure and plant spectral reflectance of Indian mustard (Brassica Juncea). Water Air Soil Pollut 180: 65-74.
8. Su Y, Han FX, Sridhar BBM, Monts DL (2005) Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fern. Environ Toxicol Chem 24: 2019-2026.
9. Han FX, Su Y, Monts DL, Sridhar BBM (2004) Distribution, transformation and bioavailability of trivalent and hexavalent chromium in contaminated soil. Plant Soil 265: 243-252.
10. Han FX, Sridhar BBM, Monts DL, Su Y (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea L. Czern. New Phytol 162: 489-499.
11. Rungwa S, Arpa G, Sakulas H, Harakuwe A, Timie D (2013) Phytoremediationan eco-friendly and sustainable method of heavy metal removal from closed mine environments in Papua New Guinea. Procedia Earth Planet Sci 6: 269- 277.
12. Cameselle C, Reddy KR (2012) Development and enhancement of electroosmotic flow for the removal of contaminants from soils. Electrochim Acta 86: 10-22.
13. Reddy KR, Cameselle C (2009) Electrochemical remediation technologies for polluted soils, sediments and groundwater, John Wiley & Sons, Hoboken, USA.
14. Lemstrom S (1904) Electricity in agriculture and horticulture. The Electrician Printing & Publishing, London, UK.
15. Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8: 1-17.
16. Wan QF, Deng DC, Bai Y, Xia CQ (2012) Phytoremediation and electrokinetic remediation of uranium contaminated soils: a review. He-Huaxue yu Fangshe Huaxue/ J Nucl Radiochem 34: 148-156.
17. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int 29: 529-540.
18. Chaney RL, Malik KM, Li YM, Brown SL, Brewer EP, et al. (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8: 279-284.
19. Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26: 776-781.
20. Zhang C, Yu ZG, Zeng GM, Jiang M, Yang ZZ, et al. (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73: 270-281.
21. Cang L, Wang QY, Zhou DM, Xu H (2011) Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard. Sep Purif Technol. 79: 246-253.
22. Aboughalma H, Bi R, Schlaak M (2008) Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants. J Environ Sci Health Part A 43: 926-933.
23. Bi R, Schlaak M, Siefert E, Lord R, Connolly H (2011) Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere 83: 318- 326.
24. Zhou DM, Chen HF, Cang L, Wang YJ (2007) Ryegrass uptake of soil Cu/Zn induced by EDTA/EDDS together with a vertical direct-current electrical field. Chemosphere 67: 1671-1676.
 25. Hodko D, Hyfte JV, Denvir A, Magnuson JW (2000) Methods for enhancing phytoextraction of contaminants from porous media using electrokinetic phenomena.
26. Putra RS, Ohkawa Y, Tanaka S (2013) Application of EAPR system on the removal of lead from sandy soil and uptake by Kentucky bluegrass (Poa pratensis L.). Sep Purif Technol. 102: 34-42.
27. Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Ghomshei M, et al. (2005) Induced plant uptake and transport of mercury in the presence of sulphur-containing ligands and humic acids. New Phytol 166: 445-454.
28. Chen JL, Yang SF, Wu CC, Ton S (2011) Effect of ammonia as a complexing agent on electrokinetic remediation of copper-contaminated soil, Sep Purif Technol 79: 157-163.
29. Clemente R, Hartley W, Riby P, Dickinson NM, Lepp NW (2010) Trace element mobility in a contaminated soil two years after field-amendment with a green waste compost mulch. Environ Pollut. 158: 1644-1651.

ElectroHorticulture and Phytotechnologies Reduce Heavy Metals in Soil

3 Electrokinetic coupled Phytotechnology articles that support the ElectroHemp phytoremediation techniques the team has developed.
Taking it one step further by growing the plants in a greenhouse ensures that cross contamination and public exposure is eliminated. see the ElectroHemp BioRad Disposal Infol


Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants
Coupled electrokinetic remediation–Bioremediation

Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants

Abstract

The use of a combination of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. Potato tubers were planted in plastic vessels filled with Zn, Pb, Cu and Cd contaminated soil and grown in a greenhouse. Three of these vessels were treated with direct current electric field (DC), three with alternative current (AC) and three remained untreated as control vessels. The soil pH varied from anode to cathode with a minimum of pH 3 near the anode and a maximum of pH 8 near the cathode in the DC treated soil profile. There was an accumulation of Zn, Cu and Cd at about 12 cm distance from anode when soil pH was 5 in the DC treated soil profile. There was no significant metal redistribution and pH variation between anode and cathode in the AC soil profile. The biomass production of the plants was 72% higher under AC treatment and 27% lower under DC treatment compared to the control. Metal accumulation was generally higher in the plant roots treated with electrical fields than the control. The overall metal uptake in plant shoots was lower under DC treatment compared to AC treatment and control, although there was a higher accumulation of Zn and Cu in the plant roots treated with electrical fields. The Zn uptake in plant shoots under AC treatment was higher compared to the control and DC treatment. Zn and Cu accumulation in the plant roots under AC and DC treatment was similar, and both were higher comparing to control. Cd content in plant roots under all three treatments was found to be higher than that in the soil. The Pb accumulation in the roots and the uptake into the shoots was lower compared to its content in the soil.


Abstract

Electrokinetic-assisted phytoremediation is an innovative technology to decontaminate heavy metal contaminated soil. In this study, the effect of electric current on plant growth and speciation of soil heavy metals has been investigated by pot experiments, and the remediation processes of electrokinetic-assisted phytoremediation has been discussed. After Indian mustard (Brassica juncea) grew for 35 d, four voltage gradients (0, 1, 2, 4 V cm−1) of direct-current (DC) were applied timely (8 h d−1) across the soils for 16 d. The extractable soil metals by different extraction methods had a significant redistribution from the anode to the cathode after the treatments. Simple correlation analysis indicated that the correlation coefficients of the extractable soil metals with root metals were better than that with shoot metals. Plant uptake of metals increased by the electrokinetic-assisted phytoremediation, and a medium voltage gradient of 2 V cm−1 was the best due to the highest metal accumulation in the plant. Voltage gradient was the most important factor in affecting the plant growth, soil properties and metal concentrations in the soil and plant.

Graphical abstract

Image for unlabelled figure

Highlights

► We study the change of soil properties in different soil sections after experiments. ► Impact mechanism of the combined technique on metal uptake by plant is investigated. ► The extractable soil metals has a significant redistribution form anode to cathode. ► The highest metal accumulation of plant is in the treatment of 2 V cm−1. ► Voltage is the foremost factor in affecting the metal contents in soil and plant.

Key words

  • Electrokinetic-assisted phytoremediation
  • Heavy metals
  • Indian mustard
  • Chemical speciation
Corresponding author. Tel.: +86 25 86881180; fax: +86 25 86881000.


Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard  (Citations: 1
Electrokinetic-assisted phytoremediation is an innovative technology to decontaminate heavy metal contaminated soil. In this study, the effect of electric current on plant growth and speciation of soil heavy metals has been investigated by pot experiments, and the remediation processes of electrokinetic-assisted phytoremediation has been discussed. After Indian mustard (Brassica juncea) grew for 35d, four voltage gradients (0, 1, 2, 4Vcm−1) of direct-current (DC) were applied timely (8hd−1) across the soils for 16d. The extractable soil metals by different extraction methods had a significant redistribution from the anode to the cathode after the treatments. Simplecorrelation analysis indicated that the correlation coefficients of the extractable soil metals with root metals were better than that with shoot metals. Plant uptake of metals increased by the electrokinetic-assisted phytoremediation, and a medium voltage gradient of 2Vcm−1 was the best due to the highest metal accumulation in the plant. Voltage gradient was the most important factor in affecting the plant growth, soil properties and metal concentrations in the soil and plant.

Wednesday, June 1, 2016

DualPost: Nuclear Cleanup Taxes-Lisa Gibbs on EPA

Lisa Gibbs give telling arguments on how big business experiments on the Public when the Government Agencies such as the EPA turn a blind eye.



The video where she talks about the St Louis Westlake Landfill and the health and safety concerns of the local residents. starts around 13.10 and goes on to talk about thinking out of the box by the Westlake Landfill Group who asked for the United Nations assistance in suing the EPA.



FYI the Manhattan Project nuclear waste was created for the Atomic Nuclear Bomb in St Louis during the Manhattan Project and dropped on Japan long ago, which President Obama just brought to the forefront of the news media on his last visit to Japan.







Spice Solar shares this tidbit of info:


New nuclear technology and safety procedures will hopefully prevent another disaster (although that’s what we thought after TMI). But what happens at a plant that isn’t crippled by a disaster? Surprisingly, even cleaning up existing nuclear plants is outrageously expensive. Ever wonder why every electric bill has a line item called “Nuclear Decommissioning?” It costs about $750 million to shut down existing plants in a process that can take 20 years or more. Around the world, nuclear plant operators have budgeted over $1 trillion dollars to clean up existing nuclear reactors (think about how many solar panels and batteries we can buy for $1 trillion dollars).

Once they are up and running, the economics of a nuclear plant are pretty good. But they are expensive to build, expensive to decommission, and outrageously expensive to clean up after a disaster. Compare that to a “solar spill” – which is basically a very sunny day. For these economic reasons, from a utility’s perspective the pendulum has swung completely way from nuclear power towards solar. Please join me on this week’s Energy Show as we delve into the long term costs of nuclear energy.


Tuesday, May 31, 2016

MOhempEnergy: Phytoremediation Research Articles


I dug out some Phytoremediation Research Articles that talk about the uptake availability of Hemp and Plants to cycle the toxins and heavy metals from the soil


Clean Up the Environment. I Raskin, ed. Wiley Interscience, John Wiley and Sons, Inc. New York, NY

  • As in the case of treating heavy metals, phytoremediation has been proven to be most effective and at a more advanced stage of development for treating readily available contaminants and therefore to treat wastewater, surface water and groundwater contamination, including the hydraulic control of tritiated groundwater. 
Soil-adsorbed radionuclides have been more difficult to treat, and success in soil treatment at this stage depends on the development of specific amendments and treatments that can increase the rate of transfer of the radionuclide into plant-available forms, without further dispersing radionuclides into the environment.

________

Metal hyperaccumulation in plants - Biodiversity prospecting for phytoremediation technology

Majeti Narasimha Vara Prasad, Helena Maria de Oliveira Freitas


Full Text http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v6n3-6/617

Abstract

The importance of biodiversity (below and above ground) is increasingly considered for the cleanup of the metal contaminated and polluted ecosystems. This subject is emerging as a cutting edge area of research gaining commercial significance in the contemporary field of environmental biotechnology. Several microbes, including mycorrhizal and non-mycorrhizal fungi, agricultural and vegetable crops, ornamentals, and wild metal hyperaccumulating plants are being tested both in lab and field conditions for decontaminating the metalliferous substrates in the environment. As on todate about 400 plants that hyperaccumulate metals are reported. The families dominating these members are Asteraceae, Brassicaceae, Caryophyllaceae, Cyperaceae, Cunouniaceae, Fabaceae, Flacourtiaceae, Lamiaceae, Poaceae, Violaceae, and Euphobiaceae. Brassicaceae had the largest number of taxa viz. 11 genera and 87 species. Different genera of Brassicaceae are known to accumulate metals. Ni hyperaccumulation is reported in 7 genera and 72 species and Zn in 3 genera and 20 species. Thlaspi species are known to hyperaccumulate more than one metal i.eT. caerulescence = Cd, Ni. Pb, and Zn; T. goesingense = Ni and Zn and T. ochroleucum = Ni and Zn and T. rotundifolium = Ni, Pb and Zn. Plants that hyperaccumulate metals have tremendous potential for application in remediation of metals in the environment. Significant progress in phytoremediation has been made with metals and radionuclides. This process involves rising of plants hydroponically and transplanting them into metal-polluted waters where plants absorb and concentrate the metals in their roots and shoots. As they become saturated with the metal contaminants, roots or whole plants are harvested for disposal. Most researchers believe that plants for phytoremediation should accumulate metals only in the roots. Several aquatic species have the ability to remove heavy metals from water, viz., water hyacinth (Eichhornia crassipes(Mart.) Solms); pennywort (Hydrocotyle umbellata L.) and duckweed (Lemna minor L.). The roots of Indian mustard are effective in the removal of Cd, Cr, Cu, Ni, Pb, and Zn and sunflower removes Pb, U, 137Cs, and 90Sr from hydroponic solutions. Aquatic plants in freshwater, marine and estuarine systems act as receptacle for several metals. Hyperaccumulators accumulate appreciable quantities of metal in their tissue regardless of the concentration of metal in the soil, as long as the metal in question is present. The phytoextraction process involves the use of plants to facilitate the removal of metal contaminants from a soil matrix. In practice, metal-accumulating plants are seeded or transplanted into metal-polluted soil and are cultivated using established agricultural practices. If metal availability in the soil is not adequate for sufficient plant uptake, chelates or acidifying agents would be applied to liberate them into the soil solution. Use of soil amendments such as synthetics (ammonium thiocyanate) and natural zeolites have yielded promising results. Synthetic cross-linked polyacrylates, hydrogels have protected plant roots from heavy metals toxicity and prevented the entry of toxic metals into roots. After sufficient plant growth and metal accumulation, the above-ground portions of the plant are harvested and removed, resulting the permanent removal of metals from the site. Soil metals should also be bioavailable, or subject to absorption by plant roots. Chemicals that are suggested for this purpose include various acidifying agents, fertilizer salts and chelating materials. The retention of metals to soil organic matter is also weaker at low pH, resulting in more available metal in the soil solution for root absorption. It is suggested that the phytoextraction process is enhanced when metal availability to plant roots is facilitated through the addition of acidifying agents to the soil. Chelates are used to enhance the phytoextraction of a number of metal contaminants including Cd, Cu, Ni, Pb, and Zn Researchers initially applied hyperaccumulators to clean metal polluted soils. Several researchers have screened fast-growing, high-biomass-accumulating plants, including agronomic crops, for their ability to tolerate and accumulate metals in their shoots. Genes responsible for metal hyperaccumulation in plant tissues have been identified and cloned. Glutathione and organic acids metabolism plays a key role in metal tolerance in plants. Glutathione is ubiquitous component cells from bacteria to plants and animals. In phytoremediation of metals in the environment, organic acids play a major role in metal tolerance. Organic acids acids form complexes with metals, a process of metal detoxification. Genetic strategies and transgenic plant and microbe production and field trials will fetch phytoremediaition field applications.The importance of biodiversity and biotechnology to remediate potentially toxic metals are discussed in this paper. Brassicaceae amenable to biotechnological improvement and phytoremediation hype are highlighted.
________
http://www.bioon.com/biology/UploadFiles/200412/20041229195615844.pdf
Hemp (Cannabis sativa L.) has been used to examine its capability as a renewable resource to decontaminate heavy metal polluted soils (Linger et al. 2002). Metal accumulation in different parts of the plant was studied (i.e., seeds, leaves, fibres and hurds), and the highest concentrations of all 80 examined metals (i.e., Ni, Pb, Cd) are found in the leaves.
  "Hemp shows a phytoremediation potential of 126 g Cd ha/1 vegetation per period. 
________
Linger P, Mu¨ssig J, Fischer H & Kobert J (2002) Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Industr. Crops Protect. 16: 33–42 See Vote Hemp - Phytoremediation with Hemp

Abstract
The effects of different cadmium concentrations [17 mg(Cd) kg-1(soil) and 72 mg(Cd) kg-1(soil)] on Cannabis sativa L. growth and photosynthesis were examined. Hemp roots showed a high tolerance to Cd, i.e. more than 800 mg(Cd) kg-1(d.m.) in roots had no major effect on hemp growth, whereas in leaves and stems concentrations of 50 - 100 mg(Cd) kg-1(d.m.) had a strong effect on plant viability and vitality. For control of heavy metal uptake and xylem loading in hemp roots, the soil pH plays a central role. Photosynthetic performance and regulation of light energy consumption were analysed using chlorophyll fluorescence analysis. Seasonal changes in photosynthetic performance were visible in control plants and plants growing on soil with 17 mg(Cd) kg-1(soil). Energy distribution in photosystem 2 is regulated in low and high energy phases that allow optimal use of light and protect photosystem 2 from overexcitation, respectively. Photosynthesis and energy dissipation were negatively influenced by 72 mg(Cd) kg-1(soil). Cd had detrimental effects on chlorophyll synthesis, water splitting apparatus, reaction centre, antenna and energy distribution of PS 2. Under moderate cadmium concentrations, i.e. 17 mg(Cd) kg-1(soil), hemp could preserve growth as well as the photosynthesis apparatus, and long-term acclimation to chronically Cd stress occurred. Additional key words: acclimation, chlorophyll fluorescence, phytoextraction, quenching, tolerance. 
  • Conclusion Hemp is a Cd-tolerant plant, with strong resistant roots and the capability for long-term acclimation. These characteristics endorse hemp as a key candidate for phytoextration approaches. 
  • For plant survival, the control  of cadmium transport to stems and leaves is highly critical. 
  • When Cd concentrations in leaves exceed a threshold, PS 2 is influenced in a complex manner, chlorophyll synthesis, water splitting, Calvin cycle enzymes and regulation of energy distribution of PS 2 are effected. 
______________

Phytoremediation of heavy metals: Recent techniques Chhotu D. Jadia and M. H. Fulekar* Environmental Biotechnology Laboratory, Department of Life Sciences, University of Mumbai, Santacruz (E), Mumbai - 400 098, India. Accepted 19 December, 2008 http://www.ajol.info/index.php/ajb/article/viewFile/59987/48257
CONCLUSION 

The pollution of soil and water with heavy metals is an environmental concern today. Metals and other inorganic contaminants are among the most prevalent forms of contamination found at waste sites, and their remediation in soils and sediments are among the most technically difficult. The high cost of existing cleanup technologies led to the search for new cleanup strategies that have the potential to be low-cost, low-impact, visually benign, and environmentally sound. Phytoremediation is a new cleanup concept that involves the use of plants to clean or stabilize contaminated environments. Phytoremediation is a potential remediation strategy that can be used to decontaminate soils contaminated with inorganic pollutants. Research related to this relatively new technology needs to be promoted and emphasized and expanded in developing countries since it is low cost. In situ, solar driven technology makes use of vascular plants to accumulate and translocate metals from roots to shoots. Harvesting the plant shoots can permanently remove these contaminants from the soil. Phytoremediation does not have the destructive impact on soil fertility and structure that some more vigorous conventional technologies have such as acid extraction and soil washing. This technology can be applied “in situ” to remediate shallow soil, ground water and surface water bodies. Also, phytoremediation has been perceived to be a more environmentally-friendly “green” and lowtech alternative to more active and intrusive remedial methods.








MOhemp Energy: Hazardous Waste Escapes in Flood: The Bridgeton and Westlake Landfills have flooded and the toxins are escaping,  a perfect example of places that natural Phytoremediat...



Tuesday, April 12, 2016

How is this helping our StLouis Neighbors?

While working on a Startup Business http:electrohemp.org that will save lives in the St Louis Region. I approached a Startup Group who works in a well known St Louis College. They are interested in the ‪#‎biotech‬‪#‎cleantech‬, and ‪#‎Agriculture‬ inventions the Team has developed and developing.
The "ElectroHemp's" Teams goals: are to save lives and help our immediate community by improving the quality of life for those affected by the Nuclear Waste that is illegally buried at ‪#‎WestlakeLandfill‬ and the ‪#‎ColdwaterCreek‬areas of the Region.
The team has figured out how to cycle the toxins from the ground faster than has been previously done with a Natural System. And then dispose of these toxins which are made inert ie: "non hazardous". This process is accomplished by using natural and organic resources.

At first, I was thrilled to get the offer for assistance. Until I read the fine print on the cost of their "so-called" help: 5-10 times the original investment to be paid back in 5 years.
Believe me I emailed back: "I understand that everyone needs to make money, did I catch that right and you guys wanted a, ROI x 5 in 5? The Country Boy in me wants to dicker a lil here and point out:
"We are helping our Neighbors in the St Louis Region" And possibly saving our friends, family, and selves from being infected by cancer causing nuclear radiation. A ROI x 2 or 3 in 5 would make the spreadsheet tolerable. Even if its Grant money the biz gets to operate on. That Grant money came from Tax Dollars< Our Money.""
ROI x5 to help our Neighbors. What kind of help is that? Who are they really trying to help?

Friday, April 8, 2016

Phytoremediation Info via SciTech Connect

 An emerging technology for cleaning contaminated soils and shallow groundwater is phytoremediation, an environmentally friendly, low- cost, and low-tech process. 
Phytoremediation encompasses all plant- influenced biological, chemical, and physical processes that aid in the uptake, degradation, and metabolism of contaminants by either plants or free-living organisms in the plant`s rhizosphere. 
A phytoremediation system can be viewed as a biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the soil and below-ground ecosystem for subsequent productive use.
ElectroHemp BioRad Disposal Tanks
ElectroHemp BioRad Disposal Tanks


Using Phytoremediation to Clean Up Contamination at Military Installations

During and following World War II, wastes from the production of munitions and other military materials were disposed of using the best available practices acceptable at that time. However, these disposal methods often contaminated soil and groundwater with organic compounds and metals that require cleanup under current regulations. An emerging technology for cleaning contaminated soils and shallow groundwater is phytoremediation, an environmentally friendly, low- cost, and low-tech process. Phytoremediation encompasses all plant- influenced biological, chemical, and physical processes that aid in the uptake, degradation, and metabolism of contaminants by either plants or free-living organisms in the plant`s rhizosphere. A phytoremediation system can be viewed as a biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the soil and below-ground ecosystem for subsequent productive use. Argonne National Laboratory (ANL) has been conducting basic and applied research in phytoremediation since 1990. Initial greenhouse studies evaluated salt-tolerant wetland plants to clean UP and reduce the volume of salty `produced water` from petroleum wells. Results of these studies were used to design a bioreactor for processing produced water that is being demonstrated at a natural gas well in Oklahoma; this system can reduce produced water volume by about 75% in less than eight days, representing substantial savings in waste disposal cost. During 1994, ANL conducted a TNT plant uptake and in situ remediation study in a ridge-and-furrow area used for the disposal of pink water at the Joliet Army Ammunition Plant.
SciTech Connect Conference: Using Phytoremediation to Clean Up Contamination at Military Installations

___________
http://www.osti.gov/scitech/servlets/purl/761921 pg 41:93

4.5 Regulatory Acceptance Current State Regulators are generally looking for a scientifically defensible basis for performance expectations. Results of bench-scale or greenhouse tests using site-specific soils are compelling evidence for predicting performance. It is also important to be realistic about the amount of time required for cleanup, acknowledging where phytoremediation is being used as a long-term remediation approach. For long-term remediation, the cost-effectiveness of the approach may be a factor. In addition, it will be important to show the controls in place to protect both ecological and human receptors. The fate of the contaminants (e.g., mercury and the volatilization processes) should also be predicted. Regulators will be looking for contingency plans in case of failure of the proposed phytoremediation technology and the willingness of the end user to implement that alternate technology. It was suggested that we confirm predicted performance by conducting one to two year field studies. Such studies should be prepared to implement contingency remedies if field performance is inadequate to achieve cleanup goals in a reasonable timeframe. The potential for adverse impacts to ecological receptors should be addressed by B-12 conducting a screening risk assessment and by comparing predicted exposures to reference values in the literature. Gaps • Regulatory acceptance of phytoremediation technologies is a critical gap. • Meeting risk-based limits may require measures to limit exposure in addition to removing contamination. • It is not known whether the timeline for deployment of a phytoremediation technology matches DOE’s regulatory requirements for cleanup.

Sunday, April 3, 2016

#KyotoHempForum #LifelineToTheFuture

#KyotoHempForum: #LifelineToTheFuture is a virtual forum taking place concurrent to the Kyoto Hemp Forum in Japan on July 2, 2016, in order for people to participate live from around the globe.
Kyto Hemp Forum Image Lifeline to the Future
Keynote speeches and panel discussions will be livestreamed, with questions and solutions shared via social media integrated into the forum dialogue. Keynote topics include: Sustainability, Climate Emergencies, and the Advocacy required to lift the International Ban on Growing Industrial Hemp.

 For media inquiries, to present a white paper,or for customized sponsorship opportunities, please e-mail info@japanhemp.net
RECENT ACTIVITY
Now, we can officially announce that she, Ms. Abe, the First Lady in Japan has confirmed to participate on stage as well as Kyoto city Mayor, Mr. Kadokawa @ ‪#‎KyotoHempForum‬ on 2nd July, 2016 @ International Kyoto Conference Center
๐Ÿป๐Ÿ‘๐Ÿป๐Ÿ˜๐Ÿ’•๐Ÿ’•๐ŸŽ‰๐ŸŽ‰๐ŸŽ‰๐ŸŽŠ๐Ÿ™Œ๐Ÿป๐Ÿ‘๐Ÿป๐Ÿ‘๐Ÿป๐Ÿ‘๐Ÿป๐Ÿ‘๐Ÿป๐Ÿ‘๐Ÿป๐Ÿ‘๐Ÿป๐Ÿ‘๐Ÿป


ๅคใใ‹ใ‚‰ๆ—ฅๆœฌๅ…จๅ›ฝใซ่‡ช็”Ÿใ—ใฆใ„ใŸๅคง้บป่‰ใฏ、็ฌฌไบŒๆฌกไธ–็•ŒๅคงๆˆฆๅพŒใซ็ฑณ่ปใซใ‚ˆใฃใฆๆ ฝๅŸน・็ ”็ฉถใŒๅŽณใ—ใ่ฆๅˆถใ•ใ‚Œใ‚‹ใพใง、ๆ—ฅๆœฌไบบใฎ็”Ÿๆดปใฎใ‚ใ‚‰ใ‚†ใ‚‹ใจใ“ใ‚ใงๅˆฉ็”จใ•ใ‚Œใฆ…
NIKKAN-SPA.JP|BY SPA!

https://www.facebook.com/hemp.org/videos/1065905146781941/

On July 2nd, the Kyoto Hemp Forum will be held in Kyoto, Japan. I am excited to be participating. The most notable speaker is the First Lady of Japan, Akie Abe, wife of Japan's Prime Minister, Shinzo Abe. First Lady Abe has been a public advocate for the restoration of hemp in Japan for its environmental benefits. Hemp has always been an integral part of Shinto, the indigenous religion of Japan, and part of the event will take place at a Shinto shrine in Kyoto. Other featured speakers include Anndrea Hermann, Paul Benhaim, Takashi Okanuma, the mayor of Kyoto and Shinto kannushi, who are responsible for the maintenance of a Shinto shrine (jinja) as well as for leading worship of a given kami. Organized by the Japan Hemp Association.
Recent Posts

Hemp Environmental Forum — Now, we can officially announce that she, Ms. Abe, the First Lady in Japan has confirmed to participate on stage as well as Kyoto city Mayor, Mr. Kado...
Read More

Search This Blog

ElectroHemp Introduction

ElectroHemp Hazardous Waste Remediation Intro

ElectroHemp BioRad Hazardous Waste Cleanup Introduction ElectroHemp - BioRad CleanUp 5 Stage Phytoremediation Treatment Train - Remove...