An Asian grass can be the key to removing lead from contaminated soil:
Sewan grass (Lasiurus scindicus Henrard) is a perennial grass that can live up to 20 years. It is a bushy, multi-branched desert grass with ascending to erect wiry stems, up to a height of 1-1.6 m, and a stout woody rhizome (FAO, 2010; Ecocrop, 2010). Leaves are alternate with a thin leaf-blade. The inflorescence is a silky, 10 cm long raceme bearing hairy spikelets. The fruit is a caryopsis (Anon., 2010; eFloras, 2010; FAO, 2010; Burkill, 1985). Sewan grass forms bushy thickets in sandy deserts where it is used for pasture, hay and fodder for livestock. This grazing pasture is of outmost importance in areas where annual rainfall is below 250 mm (Ecocrop, 2010). It is relished by ruminants but does not stand heavy grazing and disappears when overgrazed (El-Keblawy et al., 2009). |
Modern agricultural practices have left long-lasting environmental damage, but the latest trend in scientific research – which looks for natural ways of reversing this damage – is hopeful.
Research from JECRC University in India is no exception, as they found a process which restores soil that has been polluted with lead. The study, published in the American […] For the study, researchers utilized phytoremediation to remove the lead from contaminated soil.
Defined as “the efficient use of plants to remove, detoxify or immobilize environmental contaminants in a growth matrix (soil, water or sediments) through the natural biological, chemical or physical activities and processes of the plant,” the procedure refers to a number of technologies that use plants to remove both organic and inorganic contaminants in soil and water.
In this procedure, plants are grown in polluted soil to either remove a contaminant, contain it in their roots, or even degrade it completely. These plants are then harvested, processed, and disposed of.
The team first collected soil and water samples that have been contaminated by lead and put these in pots in differing concentrations. They then sowed sewan grass over a 105-day pot trial period. During this time, the team regularly sampled the soil and water to evaluate the amount of heavy metal was present in the soil.
Based on the findings, the researchers discovered that lead adversely affected the growth of sewan grass from the experiment. However, they also found that it was receptive to the lead and that the roots had accumulated it. During the samples, they found increased concentrations of lead in the roots on the 45th and 65th day after exposure.
“The lead accumulation in Lasiurus scindicus (mostly in its roots) confirming its potentiality as a phytoremediator and due to polluted soil pH high amount of lead accumulated in root compare to [the leaves],” the researchers concluded. They also looked at the potential of the grass to be further developed to restore lead-polluted soil.
Research from JECRC University in India is no exception, as they found a process which restores soil that has been polluted with lead. The study, published in the American […] For the study, researchers utilized phytoremediation to remove the lead from contaminated soil.
Defined as “the efficient use of plants to remove, detoxify or immobilize environmental contaminants in a growth matrix (soil, water or sediments) through the natural biological, chemical or physical activities and processes of the plant,” the procedure refers to a number of technologies that use plants to remove both organic and inorganic contaminants in soil and water.
In this procedure, plants are grown in polluted soil to either remove a contaminant, contain it in their roots, or even degrade it completely. These plants are then harvested, processed, and disposed of.
The team first collected soil and water samples that have been contaminated by lead and put these in pots in differing concentrations. They then sowed sewan grass over a 105-day pot trial period. During this time, the team regularly sampled the soil and water to evaluate the amount of heavy metal was present in the soil.
Based on the findings, the researchers discovered that lead adversely affected the growth of sewan grass from the experiment. However, they also found that it was receptive to the lead and that the roots had accumulated it. During the samples, they found increased concentrations of lead in the roots on the 45th and 65th day after exposure.
“The lead accumulation in Lasiurus scindicus (mostly in its roots) confirming its potentiality as a phytoremediator and due to polluted soil pH high amount of lead accumulated in root compare to [the leaves],” the researchers concluded. They also looked at the potential of the grass to be further developed to restore lead-polluted soil.