Monday, December 31, 2018

ElectroHemp 2019 Plans

2019 is the year ElectroHemp takes Phytoremediation Assisted Science to the Field in Pilot Study activities.
The Future Phytoremediation Assisted Soil and Water Cleanup Pilot Study Activity will include:
  1. Business Partnerships
  2. Job openings
  3. Science and Scientific collaboration


ElectroHemp Green Remediation Intro

ElectroHemp Pilot Study's will be undertaken to perfect and streamline the organic green remediation system and process of the Team has been fine-tuning.
ElectroHemp Job Opportunity Examples: 9 or More job slots with possible Dual and Tri job responsibilities.
  • Volunteers
  • College Internships
  • Hazmat Equipment Operator / Driver
  • Greenhouse / Horticulturalists
  • Environmental Scientist Laboratory & Testing Technician
  • Mechanical + Equipment Mechanic
  • Electronics Equipment Installation + maintenance
  • Records and Bookkeeper 
  • Attorney Environmental + Patents
  • Spokesmen - Advertising 
  • Marketing - Sales - Contracts
 If you are interested in joining the ElectroHemp team or have a property in the St.Louis Region you need assistance with we are interested in working with you.

ElectroHemp cleans soil and water with a Phytoremediation assisted process that turns pollution into cash.

2018 ElectroHemp Most Read Blog Post

10 most read ElectroHemp Blogger stats analytics report Dec 2017 to Dec 2018

Post - Post Date - Pageviews

  1. Using Trees to Clean Up Pollution Cristina Negriu - Jul, 2016 - 637
  2. Citizen Science Phytoremediation Research StLouis Jul 20, 2017 -603
  3. Phytoremediation Rafts with Electrokinetics - Aug 6, 2017 -527
  4. Yes its faster and better than phytoremediation alone -Mar 27, 2016 - 476
  5. ElectroHemp Phytoremediation Greenhouse Discussion - Mar 22, 2016 -409
  6. Healthy Environments Require Citizen Scientists - Aug 19, 2016 - 370
  7. IKEAs lesser known environmental project -Aug 31, 2016 -342
  8. St Louis IKEA Phyto Buffer Zone pt2 - Sep 1, 2016 - 304
  9. MOhempEnergy: Phytoremediation Research Articles - May 31, 2016 -298
  10. 79 Research Articles on Phytoremediation for Bioenergy Jun 26, 2018, 270

10 most read ElectroHemp Blogger stats analytics report Dec 2017 to Dec 2018

The science of phytoremediation

The study of heavy metal tolerance in plants in the late 1980s. The discovery of hyperaccumulator plants, which contain levels of heavy metals that would be highly toxic to other plants, prompted the idea of using certain plant species to extract metals from the soil and, in the process, clean up soil for other less tolerant plants.



Scientists also found that certain plants could degrade organic contaminants by absorbing them from the soil and metabolizing them into less harmful chemicals.

In addition to plants, microorganisms that live in the rhizosphere (the actively growing root zone of the soil) play a major role in degrading organic chemicals, often using these chemicals as a carbon source in their metabolism. In many cases, even the physical presence of a plant can improve the condition of the soil, giving it structure and stability and altering hydrology by enhancing water retention and preventing erosion.



There is no doubt that plants and the microbes associated with them can profoundly alter an ecosystem. Different types of phytoremediation have different potential results, such as accumulation of heavy metals in specific plant organs, voltilization from leaf surfaces, alteration of the form or availability of an organic chemical in the soil or within the plant, or actively excluding chemicals from plant tissues and keeping them out of the food chain.

The result depends on site-specific research and this approach is not generally appropriate for grossly contaminated soils that are an immediate ecological health risk. The major challenge to using phytoremediation effectively remains gaining an understanding of these various plant–chemical interactions and learning how to apply them safely in remediation programs

phytoremediation science paper source

Sunday, December 30, 2018

Phytoremediation Raft Remove Toxic Pollutants Water

The following photos are examples of where ElectroHemp Phytoremediation Raft designs can be designed to remove any number or combination of toxic pollutants found in water sources from Bridgetown and Westlake Landfill this would stop the pollution from entering the Public Water Supply, as pointed out by Alex Cohen.



The above 3 photos courtesy Environmental Activist and Humanitarian Alex Cohen- https://m.faceboAlex Cohen.
ElectroHemp Phytoremediation Rafts Remediation Example for decontamination of water.
ElectroHemp Phytoremediation Rafts


Uranium Water Biofilter Remediation

ElectroHemp blog post on Uranium Reducing Phytoremediation Raft Design
ElectroHemp Phytoremediation Raft designs can be designed to remove any number or combination of toxic pollutants found in water sources

Previously ElectroHemp highlighted how Natural biofilters for toxic metals can be used for Pb (Lead) Removal. This same technique can be used for Uranium (U) removal. 
All that needs to be done is substitute the Raft and Plants that will extract Uranium and it's by products.
Example: A phytoremediation raft can be constructed with these biosorbing products: Tree Bark (Pinus, Acacia), Agro Wastes (Tea Leaves, Rice Hulls) Apple Wastes . With these type of hyperaccumulating plant species: Hemp, Kenaf, Sun Flowers, Mustard Grass, Rape, even some Grasses 
To ensure all the Toxic Contamination comes in contact with the Raft and Plant Roots growing on the Phytoremediation Rafts that phytoextract the toxins. ElectroHemps uses Electrokinetics into the Remediation removal process. Electrokinetics draws toxins where directed.
ElectroHemps combines Electrokinetics, Phytoremediation, and Biofilters into the Remediation removal process. Key point: Electrokinetics draws toxins where directed.

Natural biofilters for toxic metals

The following Science Paper highlights how ElectroHemp Phytoremediation Rafts can be used as Biofilters to clean pollution from water sources.
Phytoremediation Raft Infographic- Plants cycle water toxins when grown on Rafts
a wide variety of agricultural and forestry by products have been used as biosorbents of toxic metals in a bid to develop biofilters for specific applications Electronic Journal of Biotechnology
The added benefit of how ElectroHemp equips these rafts with Electrokinetics will actually increase the toxic contamination removal because of the forced migration of the toxins is directed towards the rafts and plants roots which growing on the Phytoremediation Rafts.
The added benefit of how ElectroHemp equips these rafts with Electrokinetics will actually increase both the toxic up take in the plants because the forced migration of the toxins is directed towards the rafts and plants roots growing on the Phytoremediation Rafts.
ElectroHemp Phytoremediation Raft designs can be designed to remove any number or combination of toxic pollutants found in water sources.

A floating phytoremediation raft constructed of: waste tea leaves, Pinus pinaster bark, Olea europea, Acacia nilotica bark. Which has these plant examples growing on it: KenafWater LettuceAlligator Weed create a combination of Natural Solutions in the detoxification of Lead (Pb) from water. Scotty, ElectroHemp 
Phytoremediation Science Paper link
  • i) Cotton - Hg; Groundnut skins - Cu; 
  • Tree Bark (Pinus, Acacia etc.) - variety of metals; 
  • Agrowaste - variery of metals; 
  • waste tea leaves - Pb, Cd, and Zn; 
  • Pinus radiata -U; 
  • Apple waste -Variety of metals; 
  • Cellulose - Variety of metals; Rice hulls - Variety of metals; 
  • Exhausted coffee grounds - Hg; 
  • Pinus pinaster bark - Zn, Cu, Pb. Saw mill dust (wood waste)- Cr; 
  • Freshwater green algae - variety of metals; 
  • Marine algae- Pb, Ni; 
  • ii) Sphagnum (moss peat) - Cr(VI); 
  • iii) Immobilized Aspergillus niger, A. oryzae - Cd, Cu, Pb, and Ni ; 
  • Olive mill waste Olea europea Cr, Ni, Pb, Cd, and Zn, Cu and Ni; 
  • Streptomyces rimosus (bacteria); 
  • Saccharomyces cerevisiae (yeast); 
  • Penicillium chrysogenum (fungi), Fuscus vesiculosus and Ascophyllum nodosum (marine algae) Zn, Cu andNi; Phanerochaete chrysosporium, P. versicolar - Pb, Ni, Cr, Cd, Cu; Pinus radiata - U;
  • Immobilized Pseudomonas putida 5-X and Aspergillus niger, Mucor rouxxi - Cu; 
  • Actionomycetes, Aspergillus niger, A.oryzae, Rhizopus arrhizus, R. nigricans- Cd; Rhizopus arrhizus - Cr(VI), Pb; Rhizopus nigricans, Phanarochaete chrysogenum -Pb; Aspergillus niger and Rhizopus arrhizus - Ni 

Acacia nilotica bark serves as an adsorbent of toxic metals. Bark (1 g) when added to 100 ml of aqueous solution containing 10 mg ml-1 metal solution exhibited different metal adsorption values for different metals. The order of metal adsorption being Cr > Ni > Cu > Cd> As > Pb. A similar trend of metal adsorption was observed when the bark is reused (1strecycle) Cr > Ni > Cu > Cd > Pb and also in the column-sorption. In order to verify the metal removal property of A. nilotica bark, toxicity bioassay with Salix viminalis stem cuttings in hydroponic system augmented with Cd, Cr and Pb together with A. nilotica bark powder was carried out. The results of toxicity bioassay confirmed the metal adsorption property of the bark powder. The functions of toxicity studies include leaf area, root length and number of new root primordia produced per stump. The leaf area, root length and number of new root primordia increased considerably in the presence of A. nilotica bark. The order of metal toxicity for leaf area and new root primordial is Cd > Cr > Pb. However, for root length the order of metal toxicity is Cr > Cd > Pb. The metal budgets of the leaf and root confirmed that the bark powder had adsorbed substantial amount of toxic metals and thus, alleviates the toxicity imposed by the various tested elements (Prasad et al. 2001).

Quercus ilex L. phytomass from stem, leaf and root as adsorbent of chromium, nickel, copper, cadmium and lead at ambient temperature was investigated. The metal uptake capacity of the root for different metals was found to be in the order of: Ni > Cd > Pb > Cu > Cr; stem Ni > Pb> Cu > Cd > Cr and leaf Ni > Cd > Cu > Pb > Cr. The highest amount adsorbed was Ni (root > leaf > stem). Data from this laboratory demonstrated that Ni is mostly sequestered in the roots where concentrations can be as high as 7.30 nmol/g dry weight, when one year old seedlings were treated with Ni (2000 mg/l) in pot culture experiments, compared to 0.13 nmol/g dry weight, in the control. This proves that the root biomass of Q. ilex has the capacity for complexing Ni. Chromium exhibited the least adsorption values for all the three types of phytomass compared to other metals. The trend of adsorption of the phytomass was similar for nickel and cadmium i.e. root > leaf > stem. Desorption with 10 mM Na2 EDTA was effective (55-90%). Hence, there exists the possibility of recycling the phytomass. The biosorption results of recycled phytomass suggests, that the selected adsorbents are reusable (Prasad and Freitas, 2000).

Toxic Contamination and Remediation

The design and process of the ElectroHemp BioRad Toxic Contamination and Remediation system performs the steps addressed in this Phytoremediation Science Paper without having to Genetically Alter anything. 

Accomplishing 3 of the 4 needed steps mentioned below.

Figure 4. Several factors would accelerate phytoremediation technology. The prime being: genetic engineering and production of transgenics having tolerance and metal accumulation ability for use in phytoremediation, facilitating the factors that would influence the metal bioaccumulation coefficient which inturn will depends upon heavy metal availability in the soil, absorption, transport and sequestration etc, and development of low cost technologies for chelate-induced hyperaccumulation.



Saturday, December 29, 2018

Phytoremediation EPA Field Research

Phytoremediation and prior EPA Field demonstrated projects to remediate heavy metals proves Bioremediation is a viable and cost saving option for Radianuclides removal.
The EPA has previously listed about 194 ongoing Phytoremediation / bioremediation field research projects. Yr 2000

194 ongoing phytoremediation field research projects, EPA 
Heavy metals and radionuclides represent about 30% of this activity supporting that bioremediation is a feasible technology to decontaminate the environment. 
Unlike many organic contaminants most:

  •  metals and radionuclides cannot be eliminated from the environment by chemical or biological transformation. 
  • Although it may be possible to reduce the toxicity of certain metals by influencing their speciation, 
  • they do not degrade and are persistent in the environment. 

The conventional remediation technologies that are used to clean heavy metal polluted environments are:

  • soil in situ vitrification
  • soil incineration
  • excavation and landfill
  • soil washing
  • soil flushing
  • solidification
  • stabilization with electrokinetic systems 


Source: Electronic Journal of Biotechnology

Friday, December 28, 2018

Phytoremediation Alligator Weed Lead + Mercury

Alligator Weed (Alternanthera philoxeroides) was used for removal of lead and mercury from polluted waters. It is possible to use these species to restore the biosolid and sewage sludge contaminated sites, while exercising caution on human consumption.
Phytoremediation with Alligator Weed to remove Lead and Mercury from water.

Alternanthera philoxeroides, commonly referred to as alligator weed, is a native species to the temperate regions of South America, which includes Argentina, Brazil, Paraguay and Uruguay. Argentina alone, hosts around 27 species that fall within the range of the genus Alternanthera. Wikipedia

Article Science paper: Metal hyperaccumulation in plants - Biodiversity prospecting for phytoremediation technologys source Edible plants and vegetables crops plants and vegetables crops

The dominant leaf vegetable producing species viz. Amaranthus spinosus, Alternanthera philoxeroides and A. sessiles growing on the sewage sludge of Musi river located in greater Hyderabad City (close to 17º26' N latitude and 78º27' E longitude), Andhra Pradesh, India was investigated for metal accumulation. 

  • The transfer factor for metals was calculated Metal content in plant part (dry wt.)/ Metal content in soil (dry.wt).
  • Transfer factor and metal content Cd (non-essential), Zn and Fe (essential) in plant parts of these selected species indicate their aility to bioconcentrate in their tissues (Figure 12). 
  • The concentration of these metals is invariably high in leaf tissue (Bañuelos and Meek, 1989; Prasad, 2001b). 
  • Thus, it is possible to use these species to restore the biosolid and sewage sludge contaminated sites, while exercising caution on human consumption. 


 It is also possible to supplement the dietary requirement of human food with Zn and Fe as these being essential nutrients and the plant species are edible. 

[Warning] However, there is a need to monitor the metal transfer factor through food chain (Bañuelos and Meek, 1989; Bañuelos et al. 1993a; Bañuelos et al. 1993b).

Alligator Weed description courtesy of Wikipedia- Alternanthera philoxeroides can thrive in both dry and aquatic environments and is characterized by whitish, papery flowers along its short stalks, irregular, or sprawling hollow stems, and simple and opposite leave pattern sprouting from its nodes. The species is dioecious. It is also considered a herbaceous plant due to its short-lived shoot system. It produces horizontal stems, otherwise known as stolons, that can sprout up to 10 m in length and thanks to its hollow stems, floats easily. This results in large clusters of stem to amass and create dense mats along the surface. The plant flowers from December to April and usually grows around 13 mm in diameter and tend to be papery and ball-shaped. The weed's intricate root system can either allow them to hang free in the water to absorb nutrients or directly penetrate the soil/sediment and pull their nutrients from below.

Tuesday, December 25, 2018

Hemp PFAS groundwater remediation

Researcher Dr Brett Turner from Newcastle University and his team have developed a natural and effective solution for removing toxic PFAS chemicals from groundwater.



Brett Turner from Newcastle University and his team have developed a natural and effective solution for removing toxic PFAS chemicals from groundwater.

Episode Notes
Researcher Dr Brett Turner from Newcastle University and his team have developed a natural and effective solution for removing toxic PFAS chemicals from groundwater.

 

He also explains how their research is also looking at how hemp plants can be used to remediate PFAS contaminated soil. 

University of Newcastle researchers are on track to create a solution to per-and poly- fluoroalkyl substances (PFAS) contamination, in a project that could benefit the Williamtown community and countless other sites across the world. 

L to R: Research team members Mr Glenn Currell, Dr Brett Turner and Dr Dan Bishop.

Dr Brett Turner and a team from the University’s Priority Research Centre for Geotechnical Science and Engineering, are to continue investigating the use of hemp seed proteins, and the hemp plant itself, to treat water and soil contaminated with PFAS. As announced in the 2019-2020 budget, the Federal Government has awarded $4.7m to the researchers for this work.

The man-made chemicals known as PFASs have been widely used in food wrappers, textile stains, non-stick cooking utensils, carpet and furniture protectants, insecticides, electronics, and in fire-fighting foams, as they are highly effective against hydrocarbon fuel fires.

Within Australia a number of sites have been identified as having groundwater and soil contaminated with PFAS including the Williamtown RAAF base in NSW; Oakey Aviation Centre in QLD, and the Country Fire Authority (CFA) training facility in Fiskville VIC.

Globally, the extent of this problem is even greater, with more than 41,000 airports in the world, many of which are potentially contaminated with PFAS. Considered almost non-degradable in nature, many conventional treatments for PFAS remediation are not effective, yet the costs of PFAS remediation technologies are exorbitant.

Dr Turner said the team’s early findings, supported by an initial $600,000 grant through the NSW Government’s Research Attraction and Acceleration Program, were being further explored, and applied to the more complex challenge of contaminated soil.

We found that hemp has a remarkable affinity for PFAS chemicals in groundwater, so we expect that this can be applied to remediate contaminated soil – an area where currently there are no options,” Dr Turner said.

Director of the Priority Research Centre and 2015 NSW Scientist of the Year, Laureate Professor Scott Sloan said the next stage of the research would pioneer a more cost-effective way of removing chemical compounds from soil, groundwater and surface waters in a natural way.

We are excited about the potential benefits for the residents around our local RAAF base at Williamtown, and for other affected communities worldwide,” Laureate Professor Sloan said.

The $4.7m funding has been awarded through the Department of Industry, Innovation and Science over five years. This research is also supported by the University of Newcastle with additional funding of $1.5m.

We’d like to thank the Government for the funding, as well as Senator Brian Burston for his significant efforts in helping to secure it,” Dr Brett Turner said.

This critical grant will allow us to increase our team, employing three Doctoral Fellows, four PhD students and a research technician. We look forward to continuing the hard work, and pioneering a local solution to a global problem.”



Here is the audio recording see photos below of the system Scotty with ElectoHemp has been designing and working on.















Missouri Politicians and MO Dept Ag

It's time to get proactive instead of reactive and create the infastructure needed to capitalize on the budding Hemp Industry.

One of the ways Hemp can help the State of Missouri is by removing the pollution in soil and water with the system ElectroHemp has designed 

It's not Rocket Science it's Phyto Science. The Magic Happens in the Roots of the Plants as they absorb the pollution. Scotty link


Kentucky quickly submits its hemp oversight plan to USDA

By BRUCE SCHREINER, December 20, 2018


In 2018, Kentucky farmers planted more than 6,700 acres (2,710 hectares) of hemp — more than twice last year’s production, according to the state’s agriculture department. More than 70 Kentucky processors are turning the plant into products. Those processors paid $7.5 million to Kentucky growers in 2017 to help supply hemp and reported $16.7 million in gross product sales, the state agriculture department said.


That’s barely a blip on the radar for Kentucky’s diversified agriculture sector.


But the state’s agriculture department received more than 1,000 applications from farmers and processors looking to participate in the 2019 hemp program. In another sign of hemp’s growing popularity, an informational and networking session in October in Elizabethtown drew about 750 farmers, processors, manufacturers and others interested in hemp, the department said.


Friday, December 21, 2018

ElectroHemp is entering: Innovating Soil 3.0 Contest

It's official, ElectroHemp has entered the FoodShot Global  contest! 
Announcement middle January
ElectroHemp has entered the FoodShot Global  contest! 
Have you heard about the 2018-2019 FoodShot Global event that will be promoting soil health to increase food safety? 
ElectroHemp will be entering the process and system that organically cleans soil and water, better known as green remediation in the FoodShot’s first annual challenge — Innovating Soil 3.0. 
ElectroHemp will be competing and in the running for up to $10 million in equity funding and $20 million in debt funding!!!
Rajiv Singh, co-chairman of FoodShot Global, wrote on Agfunder about the contest: a search for projects and ideas that utilize the latest in technology, science, and engineering to address the crisis of soil deterioration. In particular, he writes about how a diverse set of technologies can be brought to bear to improve the conditions of the world’s soils, from machinery and equipment to low-tech farming practices, to carbon sequestration tools.
FoodShot Global Our Story 
Why is the food we eat making us sick? Why is good food more expensive? Why is there growing hunger and malnutrition in a world of plenty? Why does farming pollute and degrade our land, water, and air? 
There is a simple answer: the food system is broken. So let’s fix it. There is a better way. 
FoodShot is a collaborative platform of innovators, investors, industry leaders, and advocates who are working together to solve our biggest food system challenges.   By connecting knowledge, networks, and funding across the private and public sectors, FoodShot creates scalable, impactful, and inspired solutions – MoonShots For Better Food. 
With a global network of food industry leaders and aligned equity, debt, and prize dollars; FoodShot empowers best-in-class entrepreneurs, researchers, and advocates to transform the most critical food system challenges into opportunities for collaborative investment and meaningful change.
PROGRAM AND PROCESS  
On an annual basis, FoodShot will undertake the following,
DEFINE an annual FoodShot challenge. 
SEARCH for ground-breaking FoodShot entrepreneurs, researchers, and advocates.
VET submissions according to defined criteria.
AWARD aligned equity, debt, and non-dilutive capital to world-class ideas and businesses that are scalable, impactful, and inspired solutions to the challenge.
SCALE by leveraging a global network of stakeholders in food and agriculture. 
ECOSYSTEM DEVELOPMENT of key thought-leaders in innovation, investment, industry and policy.  
Learn more about the Food Shot Global Opportunities at their Facebook Page Foodshot Global Facebook Page
And while you are on Facebook feel free to drop by the Hemp Environmental Forum Facebook page where Scotty also shares information about the ElectroHemp system and process and wish us luck!

Thursday, December 20, 2018

RXleaf- Hemp Cleans Up Radioactive Soil

It's great that RX leaf highlights the value of using Hemp to clean up Radioactive Soil in their Article

Many people get this. But don't realize: 
1) what is the next step? What's a person do with a bunch of toxic plants? 
2) what about the places in the soil that the hemp roots don't come in contact with the toxins? Meaning the toxins are still there. 
3) 99% of any science papers all say: phytoremediation takes a long time. Who wants to wait, when the toxins need removed asap? 
4) shouldn't all birds, animals, and humans be kept away from toxic Hemp plants? Fences don't stop birds, animals, or people. 
5) lots of plants can be used for phytoremediation (400 that I'm aware of). Is it better to have a huge plant to dispose of with X amount of toxins or a smaller plant with the same X amount of toxins? ....





I agree Hemp is great, and is even greater when used in combination with the system our team has figured out that both speeds up the toxic removal and also disposes it safely eliminating all the hazards that so many don't realize.

It's not rocket science, it's phyto science. And the #ElectroHemp system also turns the hazardous waste infected plants into cash!
Learn more at the https://m.facebook.com/HempEnvironmentalForum/ or the blogs: #ElectroHemp and #MOHempEnergy

Monday, December 17, 2018

Reduction of Uranium

...the reduction of uranium was done by quantifying the fraction of uranium in both the soluble and insoluble pools. 

  • Uranium in the cultures spiked to 3 μM shifted from ~90% soluble at the T0 time point for all 3 concentrations to 70–97% insoluble by the end of the 24 day incubations (Fig 3). 
  • A mass balance indicated that 93–102% of the added uranium could be accounted for in the soluble/insoluble pools. 
  • Interestingly, the bacterium also reduced uranium as efficiently at 5 and 10 μM concentration (up to 97%-S2 Fig). 
  • However, the percent of soluble uranium at the T0 sampling time point was 78% for the 5 μM and 18% for the 10 μM treatments. Presumably, the bacteria were stimulated by the prior exposure to uranium during transfer and began reducing the radionuclide before the T0 samples could be collected. link

Search This Blog

ElectroHemp Introduction

ElectroHemp Hazardous Waste Remediation Intro

ElectroHemp BioRad Hazardous Waste Cleanup Introduction ElectroHemp - BioRad CleanUp 5 Stage Phytoremediation Treatment Train - Remove...