Showing posts with label BioRad Hazardous Waste Disposal. Show all posts
Showing posts with label BioRad Hazardous Waste Disposal. Show all posts

Thursday, June 23, 2016

Electrokinetic Remediation and Phytoremediation of Metal Contaminated Soils

Coupled Electro-kinetic Remediation and Phytoremediation of Metal(loid)Contaminated Soils 

Xinyu Mao 1,2,
Fengxiang X. Han 2 *,
Xiaohou Shao 1 and
Yi Su 3
1-College of Water Conservancy and Hydropower Engineering, Hohai University, China
2-Department of Chemistry and Biochemistry, Jackson State University, USA
3-Department of Chemistry and Biochemistry, Texas A&M University-Texarkana, USA

 Coupled Electro-kinetic Remediation and Phytoremediation of Metal(loid) Contaminated Soils. J Bioremed Biodeg 6: e163. doi:10.4172/2155-6199.1000e163 Volume 6 • Issue 2 • 1000e163 J Bioremed Biodeg ISSN: 2155-6199 JBRBD, an open access journal

Soil contamination with heavy metals and metalloids has become a serious environmental problem with rapid industrialization and urbanization [1-3]. Generally, the contamination is resulted from anthropogenic activities such as mining, domestic waste discharge, agricultural production and industrial activities. Heavy metals and metalloids such as Cd, Pb, Cr, Cu, Hg, Cs, Se, Zn and As enter the food chain and have adverse effects on human health [1-3]. As the increasing concern on the environmental risk, numerous remediation technologies have been developed while very few methods had been proved to be efficient for cleaning up of heavy metal(loid)s due to their characteristics of persistence and non-degradation in contaminated sites [1,4-10].

Phytoremediation is a cost-effective and environmental-friendly remediation technology for the remediation of heavy metal(loid)d in soils [4-6]. It promotes water and soil conservation as well as microbial activity improvement. Thus it has proved to be efficient for large area treatment with low pollutant concentration. However, several limitations such as the remediation period, the climatic condition, the root depth, the biomass production and the variety of the contaminants are existed in actual applications [11]. Therefore, selection of plants with high accumulation capacity of contaminants and new technologies for increasing soil heavy metal(loid) bioavailability should be developed.

Electro-kinetic remediation (EKR) which involves a low intensity electric field has been proposed to enhance phytoremediation. It produces conditions to solubilize metal(loid)s in soils based on the combined mechanisms of electro-osmosis, electromigration and electrophoresis [12]. As a consequence of driving force generated by the passage of current, metal(loid) ions and metal complex migrated from anodes to cathodes could be easily absorbed by plants. Since soil pH polarizations caused by electrolytic decomposition at electrodes, control of soil pH and some key electronic parameters are important for the remediation efficiency [13].

This paper reviews the current development on coupled electrokinetic phytoremediation (EK-phytoremediation) technology, including the selection principles of plants for the technology and interactions between heavy metal(loid) input and their bioavailability in soils. Furthermore, assisted amendments and key electronic parameters for the improvement of soil physical-chemical properties and plants remediation effects are also discussed in the paper.

Coupled EK-phytoremediation Technology 

Generally, coupled EK-phytoremediation techniques contain the application of a low intensity electric field adjoined to growing plants in contaminated soil. Significant variables which can affect the technology include the electric field intensity, use of AC or DC current, mode of voltage application, electrodes configurations and facilitating amendments. Lemstrom first applied electric fields on growing plants and found treated plants were greener and experienced an increase in yield [14] The removal of contaminants by plants in coupled EK-phytoremediation technology are enhanced by increasing the bioavailability of the contaminants through the effect of electric field. Increased soluble heavy metals are drive to the plant roots which might bring stress condition for the plants. Therefore, hyperaccumulators are the best choice for the coupled remediation [15]. It has been proposed sequential use of phytoremediation after EKR is beneficial for the cleanup of residue contaminants and recovery of soil properties damage caused by EKR [16]. However, coupled EK-phytoremediation technology has been proved to be more efficient and effective than the sequential use of these technologies.

Plant Selection

Phytostabilization and phytoextraction are often used for the cleaning up of contaminants. Compared to phytoextraction, phytostablization is not a permanent strategy since the contaminants remain in environment. Therefore, phytoextraction becomes the most promising and commercial application for heavy metal(loid) cleaning up in soils. Plants that suitable for phytoextraction possibly should have the features with high growth rate, high resistance to pathogens and pests, highly developed root system, large biomass production of aerial parts, high tolerance to trace metal(loid), great accumulation and translocation ability and good environment adaptability [17].

Metals accumulation and biomass are two critical factors for determination of plant species for phytoextraction purpose. Hyperaccumulators often with comparatively low over-ground biomass, accumulate greater amount of target metals. Other plants such as Indian mustard accumulates less metal but produces more over-ground biomass so that the overall accumulation is comparable to that of hyperaccumulators. Hyperaccumulation and hypertolerance are more important than high biomass in phytoremediation. In addition, compared with nonaccumulators, hyperaccumulators with high accumulation of metals in small volume of biomass are easier and more economic to operate for either metals recovery or safe disposal [18]. Plants with multiple harvests in a single growth period have great potentials for phytoextraction. In addition, due to the high growth rate, great adaptability and high biomass, grasses are more favorable than shrubs and trees in phytoremediation [19].

Bioavailability of Heavy Metals in Soils

Bioavailability of trace metal(loid)s in soil is a determining factor which influencing the efficiency of phytoextraction. Only a part of metal in soil is bioavailable for plants uptake. Processes like precipitation or strong binding to soil particles make a large part of soil metals insoluble and unavailable for plants extraction. Metal(loid)s in soil are divided into three categories according to their bioavailability: readily bioavailable (Cd, Ni, Zn, As, Se, Cu); moderately bioavailable (Co, Mn, Fe) and least bioavailable (Pb, Cr, U) [20] Low bioavailability constrains the phytoextraction effects of heavy metals while the changes of soil physical-chemical properties may enhance the bioavailability and mobility of metals. Secretion of H+ ions by roots will be able to demobilize more metals around rhizosphere. Moreover, activities of rhizospheric microbes significantly increase labile metals in soil. Except enhanced in natural phytoextraction, bioavailability of heavy metals in soil can also be increased by adding chelating agents such as EDTA, ammonium sulfate, critic acid and elemental sulfur et al. in induced phytoextraction [9].

Key Electronic Parameters for EK-phytoremediation Technology 

Significant electronic parameters are electric field intensity, use of AC/DC current, mode of voltage application and electrodes configurations. Electric field intensity has a determining influence on the effectiveness of EK-phytoremediation. Low voltage was beneficial for Indian mustard growth while the biomass production was decreased as the increase of voltage [21]. However, the increasing bioavailability of heavy metals at elevated voltage and the negative effects of the voltage on the plant development were comprised at an intermediate voltage of 2V with the best metal removal and accumulation on plant tissues [21].

Soil pH was reported to decrease from initial pH 6.5 to 3 near the anode and increased to 8 near the cathode with application of DC electric field with potato [22]. Heavy metals had a migration from anode to cathode and an accumulation in the middle of the pot where the pH was 5. On the contrary, no transportation and soil pH change was observed with application of AC electric current. Moreover, potato had 72% increase whereas 27% decline in biomass production under AC and DC electric field, respectively. Overall, test using AC electric field showed higher metals accumulation in both plant roots and shoots than the control test and the DC test [22]. Soil pH changes which resulted from the electrolysis of water were induced by the use of continuous DC electric field. In order to avoid the negative effects, switching the polarity of the DC electric field every 3 h eliminated pH changes and comparable phytoremediation efficiency between the DC and AC tests were achieved [23].

 The effectiveness of coupled EK-phytoremediation was influenced by electrode configurations. An vertical DC electric field or several electrode arrangements were extended with phytoremediation depth, preventing leaching of Pb [24,25]. The configuration with the cathode in the center surrounded with anodes showed greater potential to metals accumulation [25] Recently a 2D electrode configuration with cathode were placed on the surface of the soil and anodes was vertically installed in four corners of a rectangular chamber. The results showed enhancement in both metal accumulation in roots and shoots and metal translocation towards the shoots [26].

Amendments for EK-phytoremediation 

In order to improve metals bioavailability, control soil pH with the favorable range and facilitate plants growth, amendments are added, including chelating or complexing agents, organic amendments and fertilizers etc. Chelants enhance EK-phytoremediation by forming strong water-soluble complex which desorbs metal(loid)s from soil particle surface. EDTA is most frequently used chelant and has been proved to be effective on mobilization of metals like Cr, Fe, Cu, Pb and Zn [9]. The factors included metals species, metal/chelate ratio, presence of competing cations and soil pH et al. In addition, EDTA showed some phytotoxicicty to plants [9]. Complexing agents such as I−, Cl−, NH4 + may form soluble complexes with metal ions. Ammonium thiosulphate could result in the solubilization of Hg enhancing accumulation in plant roots and shoots [27]. Furthermore, acetic acid and lactic acid is used to neutralize the electrolysis product at the cathode and keep the electrolyte pH within a certain range. Ammonium acetate was beneficial for increasing Cu solubility and removal rate [28] Organic amendments such as sewage sludge and green waste composts improve plant growth by enhancing the physicochemical and biological conditions of soils. They also directly or indirectly alter the distribution and availability of soil metals. Several reports revealed that amended compost increased As mobility due to the competing effect of DOC and soluble P component with As for sorption sites. Moreno-Jimenez et al. discovered the mobilization of As, Cu and Se in flooded soils after the application of olive mill waste compost. In contrast, reports also indicated that the bioavailability of Pb was decreased when added compost [27]. Clemente et al. [29] found an increase in mobility of As and Sb after the two years application of compost mulch in soil which enhanced the uptake by lettuce and sunflower [29].

 Conclusion 

The coupled EK-phytoremediation technology is promising for the clean-up of heavy metal(loid)s in contaminated soils. More research is necessary for its practical design and application before applying at field scale. The research directions are suggested in following aspects such as: determine the distribution, translocation and environmental risks of heavy metal(loid)s and their influence on plants metal(loid) s accumulation; test and select the hyper accumulators which possess remarkable metal(loid)s accumulation ability for this coupled technology; test the remediation efficiency of the coupled technology in sites with both organic and inorganic contaminants; try to apply assisted amendments of natural or biodegradable products; elucidate the mechanisms and influence of electronic parameters on metabolism and growth of plant as well as uptake and translocation of metal(loid)s.

Acknowledgement

This research was supported by U.S. Nuclear Regulatory Commission (NRC– HQ-12-G-38-0038), NOAA-ECSC grant (NA11SEC4810001), NIH-RCMI grant (G12MD007581), the Jiangsu Scientific Research Innovation Program of Ordinary Higher Education Graduate (China) (KYZZ0156), the Fundamental Research Funds for the Central Universities (China) (2014B00114).

References 1. Han FX, Arieh Singer (2007) Biogeochemistry of Trace Elements in Arid Environments. Springer.
 2. Han FX, Banin A, Su Y, Monts DL, Plodinec MJ, et al. (2002) Industrial age anthropogenic inputs of heavy metals into the pedosphere. Naturwissenschaften 89: 497-504.
3. Han FX, Su Y, Monts DL, Plodinec MJ, Banin A, et al. (2003) Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften 90: 395-401.
4. Shiyab S, Chen J, Han FX, Monts DL, Matta FB, et al. (2009) Phytotoxicity of mercury in Indian mustard (Brassica juncea L.). Ecotoxicol Environ Saf 72: 619-625.
5. Chen J, Shiyab S, Han FX, Monts DL, Waggoner CA, et al. (2009) Bioaccumulation and physiological effects of mercury in Pteris vittata and Nephrolepis exaltata. Ecotoxicol 18 (1): 110-121.
6. Su Y, Han FX, Chen J, Sridhar BBM, Monts DL (2008) Phytoextraction and accumulation of mercury in three plant species: Indian mustard (Brassica juncea), Beard grass (Polypogon monospeliensis), and Chinese brake fern (Pteris vittata). Int J Phytorem 10: 547-560.
 7. Su Y, Sridhar BB, Han FX, Diehl SV, Monts DL (2007) Effects of bioaccumulation of Cs and Sr natural isotopes on foliar structure and plant spectral reflectance of Indian mustard (Brassica Juncea). Water Air Soil Pollut 180: 65-74.
8. Su Y, Han FX, Sridhar BBM, Monts DL (2005) Phytotoxicity and phytoaccumulation of trivalent and hexavalent chromium in brake fern. Environ Toxicol Chem 24: 2019-2026.
9. Han FX, Su Y, Monts DL, Sridhar BBM (2004) Distribution, transformation and bioavailability of trivalent and hexavalent chromium in contaminated soil. Plant Soil 265: 243-252.
10. Han FX, Sridhar BBM, Monts DL, Su Y (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea L. Czern. New Phytol 162: 489-499.
11. Rungwa S, Arpa G, Sakulas H, Harakuwe A, Timie D (2013) Phytoremediationan eco-friendly and sustainable method of heavy metal removal from closed mine environments in Papua New Guinea. Procedia Earth Planet Sci 6: 269- 277.
12. Cameselle C, Reddy KR (2012) Development and enhancement of electroosmotic flow for the removal of contaminants from soils. Electrochim Acta 86: 10-22.
13. Reddy KR, Cameselle C (2009) Electrochemical remediation technologies for polluted soils, sediments and groundwater, John Wiley & Sons, Hoboken, USA.
14. Lemstrom S (1904) Electricity in agriculture and horticulture. The Electrician Printing & Publishing, London, UK.
15. Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land. A review. Environ Chem Lett 8: 1-17.
16. Wan QF, Deng DC, Bai Y, Xia CQ (2012) Phytoremediation and electrokinetic remediation of uranium contaminated soils: a review. He-Huaxue yu Fangshe Huaxue/ J Nucl Radiochem 34: 148-156.
17. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int 29: 529-540.
18. Chaney RL, Malik KM, Li YM, Brown SL, Brewer EP, et al. (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8: 279-284.
19. Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26: 776-781.
20. Zhang C, Yu ZG, Zeng GM, Jiang M, Yang ZZ, et al. (2014) Effects of sediment geochemical properties on heavy metal bioavailability. Environ Int 73: 270-281.
21. Cang L, Wang QY, Zhou DM, Xu H (2011) Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard. Sep Purif Technol. 79: 246-253.
22. Aboughalma H, Bi R, Schlaak M (2008) Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants. J Environ Sci Health Part A 43: 926-933.
23. Bi R, Schlaak M, Siefert E, Lord R, Connolly H (2011) Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum). Chemosphere 83: 318- 326.
24. Zhou DM, Chen HF, Cang L, Wang YJ (2007) Ryegrass uptake of soil Cu/Zn induced by EDTA/EDDS together with a vertical direct-current electrical field. Chemosphere 67: 1671-1676.
 25. Hodko D, Hyfte JV, Denvir A, Magnuson JW (2000) Methods for enhancing phytoextraction of contaminants from porous media using electrokinetic phenomena.
26. Putra RS, Ohkawa Y, Tanaka S (2013) Application of EAPR system on the removal of lead from sandy soil and uptake by Kentucky bluegrass (Poa pratensis L.). Sep Purif Technol. 102: 34-42.
27. Moreno FN, Anderson CWN, Stewart RB, Robinson BH, Ghomshei M, et al. (2005) Induced plant uptake and transport of mercury in the presence of sulphur-containing ligands and humic acids. New Phytol 166: 445-454.
28. Chen JL, Yang SF, Wu CC, Ton S (2011) Effect of ammonia as a complexing agent on electrokinetic remediation of copper-contaminated soil, Sep Purif Technol 79: 157-163.
29. Clemente R, Hartley W, Riby P, Dickinson NM, Lepp NW (2010) Trace element mobility in a contaminated soil two years after field-amendment with a green waste compost mulch. Environ Pollut. 158: 1644-1651.

ElectroHorticulture and Phytotechnologies Reduce Heavy Metals in Soil

3 Electrokinetic coupled Phytotechnology articles that support the ElectroHemp phytoremediation techniques the team has developed.
Taking it one step further by growing the plants in a greenhouse ensures that cross contamination and public exposure is eliminated. see the ElectroHemp BioRad Disposal Infol


Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants
Coupled electrokinetic remediation–Bioremediation

Electrokinetic enhancement on phytoremediation in Zn, Pb, Cu and Cd contaminated soil using potato plants

Abstract

The use of a combination of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. Potato tubers were planted in plastic vessels filled with Zn, Pb, Cu and Cd contaminated soil and grown in a greenhouse. Three of these vessels were treated with direct current electric field (DC), three with alternative current (AC) and three remained untreated as control vessels. The soil pH varied from anode to cathode with a minimum of pH 3 near the anode and a maximum of pH 8 near the cathode in the DC treated soil profile. There was an accumulation of Zn, Cu and Cd at about 12 cm distance from anode when soil pH was 5 in the DC treated soil profile. There was no significant metal redistribution and pH variation between anode and cathode in the AC soil profile. The biomass production of the plants was 72% higher under AC treatment and 27% lower under DC treatment compared to the control. Metal accumulation was generally higher in the plant roots treated with electrical fields than the control. The overall metal uptake in plant shoots was lower under DC treatment compared to AC treatment and control, although there was a higher accumulation of Zn and Cu in the plant roots treated with electrical fields. The Zn uptake in plant shoots under AC treatment was higher compared to the control and DC treatment. Zn and Cu accumulation in the plant roots under AC and DC treatment was similar, and both were higher comparing to control. Cd content in plant roots under all three treatments was found to be higher than that in the soil. The Pb accumulation in the roots and the uptake into the shoots was lower compared to its content in the soil.


Abstract

Electrokinetic-assisted phytoremediation is an innovative technology to decontaminate heavy metal contaminated soil. In this study, the effect of electric current on plant growth and speciation of soil heavy metals has been investigated by pot experiments, and the remediation processes of electrokinetic-assisted phytoremediation has been discussed. After Indian mustard (Brassica juncea) grew for 35 d, four voltage gradients (0, 1, 2, 4 V cm−1) of direct-current (DC) were applied timely (8 h d−1) across the soils for 16 d. The extractable soil metals by different extraction methods had a significant redistribution from the anode to the cathode after the treatments. Simple correlation analysis indicated that the correlation coefficients of the extractable soil metals with root metals were better than that with shoot metals. Plant uptake of metals increased by the electrokinetic-assisted phytoremediation, and a medium voltage gradient of 2 V cm−1 was the best due to the highest metal accumulation in the plant. Voltage gradient was the most important factor in affecting the plant growth, soil properties and metal concentrations in the soil and plant.

Graphical abstract

Image for unlabelled figure

Highlights

► We study the change of soil properties in different soil sections after experiments. ► Impact mechanism of the combined technique on metal uptake by plant is investigated. ► The extractable soil metals has a significant redistribution form anode to cathode. ► The highest metal accumulation of plant is in the treatment of 2 V cm−1. ► Voltage is the foremost factor in affecting the metal contents in soil and plant.

Key words

  • Electrokinetic-assisted phytoremediation
  • Heavy metals
  • Indian mustard
  • Chemical speciation
Corresponding author. Tel.: +86 25 86881180; fax: +86 25 86881000.


Effects of electrokinetic-assisted phytoremediation of a multiple-metal contaminated soil on soil metal bioavailability and uptake by Indian mustard  (Citations: 1
Electrokinetic-assisted phytoremediation is an innovative technology to decontaminate heavy metal contaminated soil. In this study, the effect of electric current on plant growth and speciation of soil heavy metals has been investigated by pot experiments, and the remediation processes of electrokinetic-assisted phytoremediation has been discussed. After Indian mustard (Brassica juncea) grew for 35d, four voltage gradients (0, 1, 2, 4Vcm−1) of direct-current (DC) were applied timely (8hd−1) across the soils for 16d. The extractable soil metals by different extraction methods had a significant redistribution from the anode to the cathode after the treatments. Simplecorrelation analysis indicated that the correlation coefficients of the extractable soil metals with root metals were better than that with shoot metals. Plant uptake of metals increased by the electrokinetic-assisted phytoremediation, and a medium voltage gradient of 2Vcm−1 was the best due to the highest metal accumulation in the plant. Voltage gradient was the most important factor in affecting the plant growth, soil properties and metal concentrations in the soil and plant.

Wednesday, June 1, 2016

DualPost: Nuclear Cleanup Taxes-Lisa Gibbs on EPA

Lisa Gibbs give telling arguments on how big business experiments on the Public when the Government Agencies such as the EPA turn a blind eye.



The video where she talks about the St Louis Westlake Landfill and the health and safety concerns of the local residents. starts around 13.10 and goes on to talk about thinking out of the box by the Westlake Landfill Group who asked for the United Nations assistance in suing the EPA.



FYI the Manhattan Project nuclear waste was created for the Atomic Nuclear Bomb in St Louis during the Manhattan Project and dropped on Japan long ago, which President Obama just brought to the forefront of the news media on his last visit to Japan.







Spice Solar shares this tidbit of info:


New nuclear technology and safety procedures will hopefully prevent another disaster (although that’s what we thought after TMI). But what happens at a plant that isn’t crippled by a disaster? Surprisingly, even cleaning up existing nuclear plants is outrageously expensive. Ever wonder why every electric bill has a line item called “Nuclear Decommissioning?” It costs about $750 million to shut down existing plants in a process that can take 20 years or more. Around the world, nuclear plant operators have budgeted over $1 trillion dollars to clean up existing nuclear reactors (think about how many solar panels and batteries we can buy for $1 trillion dollars).

Once they are up and running, the economics of a nuclear plant are pretty good. But they are expensive to build, expensive to decommission, and outrageously expensive to clean up after a disaster. Compare that to a “solar spill” – which is basically a very sunny day. For these economic reasons, from a utility’s perspective the pendulum has swung completely way from nuclear power towards solar. Please join me on this week’s Energy Show as we delve into the long term costs of nuclear energy.


Tuesday, April 12, 2016

How is this helping our StLouis Neighbors?

While working on a Startup Business http:electrohemp.org that will save lives in the St Louis Region. I approached a Startup Group who works in a well known St Louis College. They are interested in the ‪#‎biotech‬‪#‎cleantech‬, and ‪#‎Agriculture‬ inventions the Team has developed and developing.
The "ElectroHemp's" Teams goals: are to save lives and help our immediate community by improving the quality of life for those affected by the Nuclear Waste that is illegally buried at ‪#‎WestlakeLandfill‬ and the ‪#‎ColdwaterCreek‬areas of the Region.
The team has figured out how to cycle the toxins from the ground faster than has been previously done with a Natural System. And then dispose of these toxins which are made inert ie: "non hazardous". This process is accomplished by using natural and organic resources.

At first, I was thrilled to get the offer for assistance. Until I read the fine print on the cost of their "so-called" help: 5-10 times the original investment to be paid back in 5 years.
Believe me I emailed back: "I understand that everyone needs to make money, did I catch that right and you guys wanted a, ROI x 5 in 5? The Country Boy in me wants to dicker a lil here and point out:
"We are helping our Neighbors in the St Louis Region" And possibly saving our friends, family, and selves from being infected by cancer causing nuclear radiation. A ROI x 2 or 3 in 5 would make the spreadsheet tolerable. Even if its Grant money the biz gets to operate on. That Grant money came from Tax Dollars< Our Money.""
ROI x5 to help our Neighbors. What kind of help is that? Who are they really trying to help?

Friday, April 8, 2016

Phytoremediation Info via SciTech Connect

 An emerging technology for cleaning contaminated soils and shallow groundwater is phytoremediation, an environmentally friendly, low- cost, and low-tech process. 
Phytoremediation encompasses all plant- influenced biological, chemical, and physical processes that aid in the uptake, degradation, and metabolism of contaminants by either plants or free-living organisms in the plant`s rhizosphere. 
A phytoremediation system can be viewed as a biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the soil and below-ground ecosystem for subsequent productive use.
ElectroHemp BioRad Disposal Tanks
ElectroHemp BioRad Disposal Tanks


Using Phytoremediation to Clean Up Contamination at Military Installations

During and following World War II, wastes from the production of munitions and other military materials were disposed of using the best available practices acceptable at that time. However, these disposal methods often contaminated soil and groundwater with organic compounds and metals that require cleanup under current regulations. An emerging technology for cleaning contaminated soils and shallow groundwater is phytoremediation, an environmentally friendly, low- cost, and low-tech process. Phytoremediation encompasses all plant- influenced biological, chemical, and physical processes that aid in the uptake, degradation, and metabolism of contaminants by either plants or free-living organisms in the plant`s rhizosphere. A phytoremediation system can be viewed as a biological, solar-driven, pump-and-treat system with an extensive, self-extending uptake network (the root system) that enhances the soil and below-ground ecosystem for subsequent productive use. Argonne National Laboratory (ANL) has been conducting basic and applied research in phytoremediation since 1990. Initial greenhouse studies evaluated salt-tolerant wetland plants to clean UP and reduce the volume of salty `produced water` from petroleum wells. Results of these studies were used to design a bioreactor for processing produced water that is being demonstrated at a natural gas well in Oklahoma; this system can reduce produced water volume by about 75% in less than eight days, representing substantial savings in waste disposal cost. During 1994, ANL conducted a TNT plant uptake and in situ remediation study in a ridge-and-furrow area used for the disposal of pink water at the Joliet Army Ammunition Plant.
SciTech Connect Conference: Using Phytoremediation to Clean Up Contamination at Military Installations

___________
http://www.osti.gov/scitech/servlets/purl/761921 pg 41:93

4.5 Regulatory Acceptance Current State Regulators are generally looking for a scientifically defensible basis for performance expectations. Results of bench-scale or greenhouse tests using site-specific soils are compelling evidence for predicting performance. It is also important to be realistic about the amount of time required for cleanup, acknowledging where phytoremediation is being used as a long-term remediation approach. For long-term remediation, the cost-effectiveness of the approach may be a factor. In addition, it will be important to show the controls in place to protect both ecological and human receptors. The fate of the contaminants (e.g., mercury and the volatilization processes) should also be predicted. Regulators will be looking for contingency plans in case of failure of the proposed phytoremediation technology and the willingness of the end user to implement that alternate technology. It was suggested that we confirm predicted performance by conducting one to two year field studies. Such studies should be prepared to implement contingency remedies if field performance is inadequate to achieve cleanup goals in a reasonable timeframe. The potential for adverse impacts to ecological receptors should be addressed by B-12 conducting a screening risk assessment and by comparing predicted exposures to reference values in the literature. Gaps • Regulatory acceptance of phytoremediation technologies is a critical gap. • Meeting risk-based limits may require measures to limit exposure in addition to removing contamination. • It is not known whether the timeline for deployment of a phytoremediation technology matches DOE’s regulatory requirements for cleanup.

Sunday, March 27, 2016

Yes its faster and better than phytoremediation alone

ElectroHemp with the 5 stage green remediation process and system 

Addresses all of the concerns and issues of using nature to rid the soil of mankinds pollution.
Everyone in the know who has researched and studied phytoremediation understands that plants can be used to cycle the toxins from the soil. Its not rocket science and has been done for many years with success.
The information provided below is a collection of 20 weblinks, studies, and information on phytoremediation. Feel free to discover how plants can phytoremediate the toxins from the soil. As you are reading these prior studies and information you many notice that they all mention a few things: phytoremediation works, phytoremediation is a slow process, phytoremediation can be used on many levels for many different toxins such as Lead, Cadmium, Nuclear Waste, Thorium, Nickel, Arsenic, and more.

Realize one thing while reading the studies

ElectroHemp with the 5 stage treatment system and process speeds up the toxic removal.  This is accomplished by: Electro-KINETICS Year Round Toxic Removal by utilizing a Greenhouse, and additional dual harvesting options!


I mentioned its not rocket science to use plants to phytoremediate soil toxins.  Its actually pretty simple.  Plant a Seed!  Tend to the plant while it is growing by making sure water, nutrients, and sunlight is available for the plants.  Any Farmer, Landscape Pro, or Horticulturist can explain this process if additional information is needed.

What has stumped many industry pros is what drove Scotty to discover the disposal of the toxic plants in a eco friendly option that does not involve transferring the toxics to another location or the energy intense "fire burning" to clean the soil.

This next diagram is the Organic and Natural BioRad Hazardous Waste removal and the final step in the 5 stage treatment train.  This self contained insitu disposal system eliminates the hazards of transportation and storing the nuclear waste. 

The folllowing links were provided by Hemp Nayer who is also a Member, Leader, and Adviser of the Hemp Environmental Forum.  She gets it do you? 



1. Phytoremediation: Using Plants to Clean Soil http://mhhe.com/biosci/pae/botany/botany_map/articles/article_10.html
3. Hemp Remediation Study http://www.hempcleans.com/hc_wp/?p=163
5. Here's a piece I did in 2010 Hemp Phytoremediation Program Can Help With Gulf Oilspill Crisis - that has some phytoremediation videos on it http://h4v.blogspot.com/2010/06/hemp-phytoremediation-program-can-help.html
7. Here's a study guide (proposed structure for conference topics) for the Hemp For Victory book http://h4v.blogspot.com/2010/06/hemp-for-victory-global-warming.html
9. Hemp and the Decontamination of Radioactive Soil - http://sensiseeds.com/en/blog/hemp-decontamination-radioactive-soil/
11. This is a $35 report Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential http://www.sciencedirect.com/science/article/pii/S0926669002000055
12. Phytoremediation: An Environmentally Sound Technology for Pollution Prevention, Control and Redmediation - An Introductory Guide To Decision-Makers http://www.unep.or.jp/ietc/Publications/Freshwater/FMS2/2.asp
13 The Use of Plants for the Removal of Toxic Metals from Contaminated Soil http://plantstress.com/Articles/toxicity_m/phytoremed.pdf
14. Phytoremediation Potential of Hemp (Cannabis sativa L.): Identification and Characterization of Heavy Metals Responsive Genes http://onlinelibrary.wiley.com/doi/10.1002/clen.201500117/abstract
15. EVALUATION OF THE PHYTOREMEDIATION POTENTIAL OF INDUSTRIAL HEMP http://www.dushenkov.com/Pages/Phytoremediation/1999_Dushenkov_Abstract%204240%20.pdf
17 INTERNATIONAL JOURNAL OF PHYTOREMEDIATION (list of their articles - networking) http://www.tandfonline.com/toc/bijp20/current
20. Phytoextraction of Heavy Metals by Hemp during Anaerobic Sewage Sludge Management in the Non-Industrial Sites http://pjoes.com/pdf/12.6/779-784.pdf
Also here's a playlist on some phytoremediation videos on Youtube https://www.youtube.com/watch?list=PLuyaaCj3aFuj4T_Eu77Bjosmbc0UIa4US&v=uZOkKh1DPWw
The list of nuclear and hemp videos with a Fukushima focus is posted http://hempnayer.blogspot.com/2014/03/time4clues-playlist-hemp-and-other.html

Friday, March 25, 2016

BioRad Hazardous Waste Cleanup UPdate x2

ElectroHemp is proud to announce: The Teams BioRad Hazardous Waste CleanUP process and system has been referred up the chain to a new contact with the MO DNR!

I am silently wondering if this new contact will acknowledge that off-site nuclear radiation contamination has occurred in the past and continues to do so?

I posted previously: 3 out of 5 State and Federal Employee emails I receive: did "NOT" acknowledge off site radiation was happening or happenedin re to Westlake Landfill or Coldwater Creek.

Hopefully this is a step in the right direction with the Missouri Government.

The team has also been asked to participate in the #KyotoHempForum, learn more about their upcoming event at https://www.facebook.com/HempEnvironmentalForum/
It looks like the Team will have a busy spring, summer, and fall!  We are also looking forward to participating in the Farm Aid show in Chicago this fall!

ElectroHemp BioRad Hazardous Waste CleanUP addresses Off-Site Nuclear Waste Contamination
ElectroHemp BioRad Hazardous Waste CleanUP addresses Off-Site Nuclear Waste
Contamination

ElectroHemp BioRad Hazardous Waste Disposal Diagram-Nuclear Waste Inert while Generating Electricity
ElectroHemp BioRad Hazardous Waste Disposal Diagram-Nuclear Waste Inert while Generating Electricity


Recap of the ElectroHemp BioRad Hazardous Waste Disposal Diagram:

  1. Plants are Grown in Greenhouse or Hoophouse for year round Phytoremediation.  
  2. Electric-horticulture directs the nuclear radiation to the greenhouse which speeds up the removal of the soil toxins.
  3. Plants are disposed of in-situ with the BioRad Hazardous Waste Disposal system that turns the Toxic Nuclear Waste inert and Generates Electricity.


Sunday, March 20, 2016

ElectroHemp Hazardous Waste Remediation Intro

ElectroHemp BioRad Hazardous Waste Cleanup Introduction


ElectroHemp - BioRad CleanUp
5 Stage Phytoremediation Treatment Train - Removes Heavy Metals from the Soil faster than phytoremediation alone
Fact: 30,000 Superfund Sites in the USA full of toxic substances which have harmful and negative life changing effects on Human, Animals, and the Natural Environment.
1 in 6 Live Near a Hazmat Location


ElectroHemp BioRad CleanUp is a green remediation implementation strategy and process to clean up Hazmat Locations and Superfund sites in the St Louis Region and beyond.


ElectroHemp Natural and Organic BioRad Hazardous Waste Removal.
  1. Phytoremediation
  2. Electro-Horticulture
  3. Beneficial Soil Microbes
  4. Toxic Eating Micro Fungi
  5. Contain and Detoxify Soil and Water
5 Stage Treatment Train Speeds Up the Toxic Removal Process


Highlights


  • Grow plants that clean soil and are a source of sustainable biomass energy


  • Utilize Electro-Horticulture to speed up the movement of heavy metals and toxins within the soil


  • Encourage the growth of Microbes and Micro Fungi that aid in eliminating heavy metals and soil toxins

  • Address Water Pollution by containment and filtration


  • Solar PV and Sustainable Biomass resources provide “on-site” energy needs
Electromigration is the forced movement of Heavy Metals in the Soil by Electro-Horticulture
Electromigration is the forced movement of Heavy Metals in the Soil by Electrokinetics





KEYS: Electrokinetics directs the heavy metal toxins to a central point where plants phyto-extract the toxins.  Electrokinetics increases soil vitality which allows plants to grow bigger, healthier, and cycle more toxins from the soil.


 In the next post will explain how the 5 stage treatment train- Contains and Controls the harmful nuclear radiation safely.

Search This Blog

ElectroHemp Introduction

ElectroHemp Hazardous Waste Remediation Intro

ElectroHemp BioRad Hazardous Waste Cleanup Introduction ElectroHemp - BioRad CleanUp 5 Stage Phytoremediation Treatment Train - Remove...